

MSU FORESTRY

Woody Energy Crops

Dr. Raymond O. Miller Sustainable Forestry Conference 15 April 1010 Florence, Wisconsin

The Outline

MSU FORESTRY

- Energy 101 (context)
- Silviculture 101 (basic biology)
- Productivity projections (reality)
- Production systems (nuts & bolts)
- Current research (the future)

How much energy do we use?

- 3.2 Quadrillion btus (3 × 10¹⁵ btus), MI 1.9 Quadrillion btus (2 × 10¹⁵ btus), WI
- Run a house furnace for 3.4 million yrs
- Nine trillion 100 watt bulbs for a year
 That's 6 bulbs every square foot
 Or, about a million bulbs for each person
- 600 billion miles in a 25 mpg car.
 That's about 80 rounds trip to Pluto

From US Energy Information Agency

Total annual energy consumption = 3.2 Quadrillion BTUs (lignocellulosic feedstocks could provide up to 21% of this)

Total annual energy consumption = 1.9 Quadrillion BTUs

Drivers for Renewables

 Rising fossil fuel prices (*irregular but trending upward*)

MSU

- Concerns of CO₂ emissions
- Cost of NO_x and Mercury emission reductions

- Desire to build new industry
- Renewable fuel/energy mandates
- Policy driving cost shares & incentives

The Biomass Wedge

MSU FORESTRY Since

FEED-STOCK Residues Unused Stuff Energy Crops

MSU FORESTRY

> HAND-LING Raw or Green Dried Compressed Modified

PRO-CESSING Combustion Thermochemical **Biochem** ical

PRODUCT Power Heat **Transpor** tation Chemicals

The Outline

- Energy 101 (context)
- Silviculture 101 (basic biology)
- Productivity projections (reality)
- Production systems (nuts & bolts)
- Current research (the future)

Nature's Solar Collectors

- Plant Efficiency depends on
 - Leaf area
 - Crown architecture
 - Photosynthesis/metabolic balance
 - Partitioning of carbohydrates by the plant
- Productivity depends on the arrangement of plant communities (Stands)

Stand Development

- Carrying capacity = ability of a site to produce fiber
- Stocking = measure of site occupancy
- Productivity = f(# plants x plant size)
- Plant size determines

 Product eligibility
 Equipment design & efficiency
 Feedstock composition

Stand Development

Time -->

Class Dismissed

MSU FORESTRY

> Since 1902

The Outline

MSU FORESTRY

- Energy 101 (context)
- Silviculture 101 (basic biology)
- Productivity projections (reality)
- Production systems (nuts & bolts)
- Current research (the future)

Why Plantations?

- Higher productivity
 - Smaller landbase
 - Less hauling

MSU

- Shorter rotations
- Better control over feedstock characteristics
- Better control over production system
- Less public resistance
- More opportunities for subsidies and credits

Energy Plantation Potential MI & WI Timberland ~0.5 dry tons-acre⁻¹ -year⁻¹ Pulpwood plantations 1.7 dry tons-acre⁻¹ -year⁻¹ Energy plantations 4 dry tons-acre⁻¹ -year⁻¹ (~8 times the yield of Timberlands)

40 million g/yr ethanol plant

- Needs about 500,000 dry tons per year
- From 1 million acres of "Timberland"
- Or, 125,000 acres of "Energy Plantations" (200,000+ acres 'available' in the UP)
- Haul radius for Energy Plantations is ~1/3 that of Timberland if they are 8 times as productive per acre.
- Production costs are higher, but transportation costs are lower.
- Is there an economist in the house?

Reasonable Yield Reports

Таха	Mean Annual Increment	Test Location
European alder	4.6 dry tons acre ⁻¹ year ⁻¹	Indiana
Cottonwood	4.2 dry tons acre ⁻¹ year ⁻¹	Mississippi
Yellow birch	3.7 dry tons · acre ⁻¹ · year ⁻¹	Michigan
Silver maple	3.3 dry tons · acre ⁻¹ · year ⁻¹	Kansas
Poplar hybrid	6.6 dry tons acre ⁻¹ year ⁻¹	Brit. Columbia
NM6 poplar	3.8 dry tons · acre ⁻¹ · year ⁻¹	Escanaba, MI
Willow	2.5 dry tons acre ⁻¹ year ⁻¹	Escanaba, MI

Cannell & Smith (1980)

predict a working maximum to be 3.1 - 6.2 dry tons acre⁻¹ year¹

Abandoned Cropland is derived from MI Census of Agriculture reports from 1945 and 2002 and reduced based on county population density. Yields are assumed to be 3 dry tons per acre each year. Computations by R. Miller 4-24-07

Landbase

• 800,000 acres in the UP & northern LP • 486 Mw electricity 192 M gal etOH

(Making a bunch of assumptions)

The Outline

- Energy 101 (context)
- Silviculture 101 (basic biology)
- Productivity projections (reality)
- Production systems (nuts & bolts)
- Current research (the future)

Alteration of Existing Systems

- Capture feedstocks native forests

 Under /over dimension materials (residues)
 Undesirable species
 - Mortality

NSU

- -Ladder fuel reduction treatments
- Unique habitat management systems

Natural Forest Materials

MSU

FORESTRY

MSU FORESTRY Since 1902

(SRIC) Energy Plantations

- Standard Density
 - 500 to 1,000 stems per acre
 - 8 to 12-year rotations
 - Use existing equipment
 - Offers harvesting and product options

High Density

- 3,000+ stems per acre
- 3- to 4-year rotations
- Requires special equipment
- Produces narrow range of feedstocks

Poplar Production System

Willow Biomass Production Cycle

MSU FORESTRY

> Since 1902

Planting

First year growth

One-year old after coppice

Early spring after coppicing

Energy Plantation Phases

- Site Preparation
- Plantation Establishment
- Management / Maintenance – Weed & Pest Control – Fertilization and/or Irrigation
- Harvesting
- Transportation

Economic Analysis Tool www.esf.edu/ willow/ download.htm

Cost distribution in %, undiscounted

© 2008 The Research Foundation of State University of New York

EcoWillow v1.4 (Beta)

Stock removal Transport Harvest Fertilizer Stablishment Administration I and cost and	Loan payments
Transport Harvest Fertilizer Establishment Administration I and cost and	■ Stock removal
 Harvest Fertilizer Establishment Administration I and cost and 	Transport
 Fertilizer Establishment Administration I and cost and 	∎Harvest
 Establishment Administration I and cost and 	Eertilizer
 Administration I and cost and 	Establishment
I and cost and	Administration
La su mana su s	Land cost and

Costs (per ha)	US\$/ha	US\$ total	\mathbb{S} of total
Loan payments	0	0	0%
Stock removal	740	7,400	7%
Transport	1,123	11,227	10%
Hervest	3,099	30,988	29%
Fertilizer	875	8,750	8%
Establishment	2,709	27,092	25%
Administration	276	2,760	3%
Land cost and insurance	1,955	19,550	18%
Total	10,777	107 767	100%

Next Graph

MSU FORESTRY 1902

Energy Plantation Costs

- Land Costs (18%)
- Site Preparation (7%)
- Plantation Establishment (25%)
- Management / Maintenance (11%)
- Harvesting (29%)
- Transportation (10%)

Dilbert

by Scott Adams

The Outline

- Energy 101 (context)
- Silviculture 101 (basic biology)
- Productivity projections (reality)
- Production systems (nuts & bolts)
- Current research (the future)

Making It Work

- Triple Helix Partnerships (Universities, Government, Industry)
- Regional scientific networks
- Yield improvements
- Production system efficiencies
- Increased sustainability
- Education & outreach
- Better understanding of fundamentals

